

Transmission-Based Electrical Servo Actuators [TBA's]

DE-AC26-01NT41309
Phase I, 18 months, \$425,611
Optional Phase II, 24 months, \$450,386

PM/PI Bill Hamel, Associate Professor

University of Tennessee

COR David Szucs

National Energy Technology Laboratory

Relevancy & Technical Approach – Background

- High rad/hazards EM projects > robotics & remote handling systems.
- 100 kg " D&D payloads " tons.
- High payloads, long reach systems > electro hydraulic manipulators...power/torque density.
 - Higher complexity, lower reliability, lower maintainabilitymuch greater LC costs.
 - Industrial trend toward electrical drives.
- TBA concept will allow electrical drives to operate in the range of hydraulic drives.

What is a TBA?

- Conventional electrical servoactuators
 - Fixed gear reduction
 - Moderate speed/high power DC or AC motors
- Transmission-based electrical servoactuators
 - Variable gear reduction
 - Trade motor mass for transmission mass
 - High-speed/high power DC or AC motors

Relevancy & Technical Approach – Goals

- Overall: Explore the practicality of using multispeed transmissions to extend the operating range of electrical servo actuators for EM applications, ultimately reducing life cycle costs of remote systems.
- Sub Goals [Phase I] for TBA's: Evaluate Feasibility
 - The feasibility of multi-speed transmission mechanical miniaturization.
 - The feasibility of high performance servo control with transmission gear ratio changing.
 - The feasibility of approaching the power and torque density of electro hydraulic actuators with TBA-based electrical drives.

Relevancy & Technical Approach – Goals

- Sub Goals for Phase II: Commercial Viability
 - Design & fabricate pre-production prototype actuator.
 - Evaluate prototype performance in a high-believability test setting.
 - Establish technology transfer strategy for commercialization.

- Phase I Evaluate TBA concept feasibility
 - Conceptual design of both discrete and continuously variable transmission (DVT and CVT) configurations
 - Dynamic simulation and analysis of concepts control
 - Develop servo control concepts
 - Fabricate functional demonstrator
 - Proof-of-principle experiments
- Phase II Evaluate commercial viability
 - Design and fabricate pre-production prototype
 - Experimental evaluation performance
 - Bench level
 - D&D system level integrate with a real system
 - Project manufacturing/production factors

Relevancy & Technical Approach – Maturity & EM Relevance

- Technology Maturity
 - Project was a response to the NETL Applied Research PRDA for D&D.
 - DVT, CVT technologies base in vehicles.
 - Mechanical miniaturization in consumer electronics, etc.
 - Nonlinear and hybrid control theories.
 - Phase I: Stage 2, applied research.

RL-WT021	Cleaning, Decontaminating, and Upgrading Hanford Pits
RL-MW02	Remotely Controlled Size and Volume Reduction Techniques for RH MLLW and RH Transuranic Waste (TRUW)
OH-WV-910	Remote Size Reduction of Components
OH-WV-918	Remote Handling in Extraction Cells
RL-DD08	Remote Cutting Technologies for Buildings 324 and 327
OH-WV-903	Vitrification Expended Material Processing (SVDP-3-99)
SR01-2040	Demonstrate Remote Decommissioning and Disassembly of High Level Waste Processing Equipment

- Relationship to S&T Thrusts
 - S&T Thrust 1, Closure Site Support
 - Technically relevant, but...
 - Time horizon may be too short.
 - Assuming successful Phase I results, it will likely be a total of at least 5 years to commercialization.
 - S&T Thrust 2, Alternatives to high risk/cost baselines
 - Directly relevant.
 - Will reduce costs and operational risks of remote handling systems that would be implemented with electro hydraulics.

Benefits

- Relative to Competing Baselines
 - Avoidance or reduction of the use of high pressure hydraulic drives in remote, or mechanized equipment.
 - Reduced
 - Initial cost: wiring versus piping; 30-50% reduction.
 - Operating costs: increased reliability with simplified maintenance. LCC estimate: 25-40%.
 - Dependence on limited electro hydraulics technical/crafts skills.

Benefits

- Benefits to S&T Thrusts
 - S&T Thrust 1 ???, time horizon too short.
 - S&T Thrust 2 Yes, lower cost and more reliable alternative to electro hydraulic actuators. Accrued savings could be on the order of millions.
- Potential for Becoming a Baseline
 - TBA technology is a sub-system technology not normally associated with baselines to remediation. The technology can lead to a change in the baseline design approach of higher payload handling machines.

Technical Progress to Date

- Team established.
- Target actuator requirements defined.
- Proof of principle experiment concept and test stand established.
- Completed initial literature reviews of DVT and CVT technologies.
- Completed initial dynamic simulation of a DVT-based TBA.
- DVT design concept 75% complete.
- CVT's being studied further.
 - Slow start, but essential on schedule.

DVI

Transmission Basics: CVT's

XM Basics: DVT Speed Changing

Cost & Schedule Status

Milestone Key:

Phase I – Concept Development

- 1. Requirements Complete
- 2. Conceptual Design Complete
- 3. Detailed Design Complete
- 4. Basic Simulation Operational
- 5. Servocontrol Design Complete
- 6. ORNL-donated Test Stand Installed
- 7. Initial Proof Tests Complete
- 8. Draft Topical Report Submitted

Milestone Kev:

Phase II – Commercial TBA Prototype

- 1. Requirements Complete
- 2. Design Complete
- 3. Fabrication/Procurement Complete
- 4. Strategy Finalized
- 5. Integration for Site Tests Complete
- 6. Initial Proof Testing Complete
- 7. Draft Final Report Submitted

On Schedule & Within Budget

Miscellaneous

- Stakeholder activities: n/a
- Commercialization: Phase II
- User Interactions: Coordinated with Dennis Haley, DDFA Robotics
- *Technical Peer Review: Entrance to Phase II possibly.
- Disclosures/IPR: Patents possible.

Summary

- TBA Applied Research
 - All-electrical alternative to electro hydraulics
 - Potential wide range cost/risk impact in remote and mechanized operations – reduced costs and increased reliability/maintainability
 - Challenges: control & miniaturization
- Relevant to S&T Thrust 2 & existing needs
- Phase I Feasibility verification is within budget and on schedule
- Initial concepts designs very positive
- Concept feasibility results in March 03

